Graz University of Technology develops hybrid energy storage

12. February 2017

 

Electric mobility of the future requires a new generation of energy storage systems. Up till now, battery systems in electric cars have been used in conjunction with super condensers; two systems which could not be more different. Batteries store large amounts of energy and release them slowly. Super condensers, on the other hand, store only small amounts of energy, but can deliver them with much greater power. Now a research group, formed around the Graz University of Technology, has succeeded in developing a storage method that combines the advantages of both systems.


Researchers from the universities of Montpellier, Bordeaux and TU Graz demonstrate in Nature Materials that it is possible to combine the high-energy density of batteries with the high-power output of super capacitors in a single system – thanks to liquid energy storage materials.

Batteries and super capacitors are electrochemical energy storage media, but they are as different as night and day. Both are capable of energy storage and targeted energy release – and yet there are major differences between the two. Batteries store very large amounts of energy that is released slowly but constantly. By contrast, super capacitors can only store small amounts of energy, but they release this energy much faster and more powerfully with large short-term peak currents.

A group of researchers under the lead of Olivier Fontaine from the Université de Montpellier in collaboration with a researcher from Bordeaux und Stefan Freunberger from TU Graz had a sudden flash of insight. Why not exploit the benefits of batteries and super capacitors simultaneously and combine them in some kind of energy hybrid, they asked themselves. In the current issue of renowned scientific journal Nature Materials the group introduces its approach, describing a liquid energy storage material for the first time in a European Research Council (ERC) sponsored study. While the energy density of this material is comparable to that of a battery, its power output equals that of a super capacitor.

Ions with an urge to move

“Batteries release energy so slowly and take so long to charge because their energy storage materials are solid. This make it difficult for the ions to move.  But as the ions in a super capacitor move in a liquid, they are much more mobile than in a solid material,” explains Stefan Freunberger from the Institute of Chemistry and Technology of Materials at TU Graz. The novel redox active ionic liquid developed by the group consists of an organic salt that is liquid at a temperature of just below 30 °C – only slightly above room temperature. Similar to a solid storage medium this liquid can store many ions, but allows them to be much more mobile.

The sudden flash of insight of the scientists culminated in a first approach to create an integrated energy supply system that offers a constant energy supply with high-power output. In some cases we are still faced with an either/or decision. Automatic doors, for example in trams or trains, are typical candidates for super capacitors. Energy is only needed for a very short time but when it is, a high-power output is of the essence. In other cases batteries are clearly the first choice. “But the principle of an energy hybrid can offer enormous advantages, for example when applied in electric vehicles. So far, electric vehicles often carry a combination of different battery types or battery systems together with super capacitors. If we had a single system that combines the benefits of both energy storage types, we could save considerable space and resources,” remarks Freunberger.

Additional information can be found HERE.

 
Back to overview
 
 

Weitere News zu diesem Thema

Fortune 500 company establishes new R&D site in Graz

The Chinese Fortune 500 company, Midea, is building a research and innovation centre in Graz. More →


The green power station for the balcony

Soon household balconies may not just be growing herbs, tomatoes and peppers, but also sprouting forth mini PV power stations. More →


Novel film for photovoltaics

ISOVOLTAIC is launching a new backing film made from coextruded polypropylene (PP) for the photovoltaic industry. More →